
Django in Enterprise World

PyCon4
9 May, 2010

Simone Federici
s.federici@gmail.com

Obiettivo

Django è sulla bocca di tutti, è un full stack framework che ha
messo una pietra di storia nel mondo python, e non solo.

Ma perchè, in Italia, le grandi aziende per il web non riescono
a uscire dal tunnel J2EE/JSF o, peggio, Struts?

In questo talk porto alla luce differenze sostanziali di
approccio alle problematiche comuni di applicazioni web, e
ad architetture più complesse Enterprise. Ma cosa significa
Enterprise? Tutto ciò che i clienti definiscono Enterprise lo è
veramente?

Come javista che pythonista, parlerò di cosa il mondo java
rimprovera al mondo python e come ho scoperto che le
accuse fanno acqua...

Agenda

• Mini Django Overview (ma dovreste già conoscerlo)

• Enterprise World
o Multi Tiers (client, web, business, EIS)
o Conteiners, WebServices (SOA)
o Transactions

• Development
• Deployments
• Scalability, Accessibility, and Manageability

• Q?

Django mini overview (1)
class Reporter(models.Model):
 full_name = models.CharField(max_length=70)
 def __unicode__(self):
 return self.full_name

class Article(models.Model):
 pub_date = models.DateTimeField()
 headline = models.CharField(max_length=200)
 content = models.TextField()
 reporter = odels.ForeignKey(Reporter)

 def __unicode__(self):
 return self.headline

manage.py syncdb

from django.conf.urls.defaults import *
urlpatterns = patterns('',
 (r'^articles/(\d{4})/$', 'mysite.views.year_archive'),
 (r'^articles/(\d{4})/(\d{2})/$', 'mysite.views.month_archive'),
 (r'^articles/(\d{4})/(\d{2})/(\d+)/$', 'mysite.views.article_detail'),)

import models from django.contrib import admin
admin.site.register(models.Article)

Django mini overview (2)

def year_archive(request, year):
 a_list = Article.objects.filter(pub_date__year=year)
 return render_to_response('news/year_archive.html', {'year': year, 'article_list': a_list})

{% extends "base.html" %}
{% block title %}Articles for {{ year }}{% endblock %}
{% block content %}
 <h1>Articles for {{ year }}</h1>
 {% for article in article_list %}
 <p>{{ article.headline }}</p>
 <p>By {{ article.reporter.full_name }}</p>
 <p>Published {{ article.pub_date|date:"F j, Y" }}</p>
 {% endfor %}
{% endblock %}

Django mini overview (4)

from django.forms import ModelForm
class ArticleForm(ModelForm):

 class Meta:
 model = Article
 exclude = ('title',)

ArticleForm(request.POST).save()
ArticleForm(instance=Article.objects.get(pk=1)).save()
ArticleForm(request.POST, instance=Article.objects.get(pk=pk)).save()

<form action="/form/" method="post">
 {{ form.as_p }}
 <input type="submit" value="Submit" />
</form>

Django mini overview (4)

Authentication backends
Middleware
Validators
Commands
Custom model fields
Custom template tags
Custom template filters
Custom storage system
PDF, CVS, JSON, XML
Jython
Deploying
Legacy database
Error reporting via e-mail
Initial data

Managing files
Testing Django applications
Django’s cache framework
Conditional View Processing
Sending e-mail
Internationalization and localization
Pagination
Serializing Django objects
Django settings
Signals

A lot of pluggable applications...

South (Data and DDL migrations)

New Django 1.2 Features

• Model Validation

• Multi Database

Enterprise World

Defines an architecture for implementing services as
multitier applications that deliver the scalability,
accessibility, and manageability needed by enterprise-
level applications.

Distributed multitiered application model

• Web
o browser
o ajax
o flash
o flex

• GUI
• Batch

• DB
• Legacy
• NO SQL
• FTP
• Remote
• JMS!

• Persistence
Entities

• Session Beans
• Message-

Driven Beans

• Presentation-oriented
o GET,
o HEAD,
o POST,
o PUT,
o DELETE

• Service-oriented (WS)
o XML-RPC
o SOA
o REST
o JSON

EE Containers
Centralized Configuration

• JNDI
• Datasource e Connection Pool (DB tuning)
• Mail Server (SMTP configuration)
• Enterprise JavaBeans (EJB) container
• Web container
• Application client container
• Applet container

Web Tier

Web Applications
• Servlet
• Filters
• Session Listner
• CustomTag
• Locale
• JSF (why?)

Web Services
• XML
• SOAPTransport

Protocol
• WSDL Standard

Format
• UDDI and XML

Standard Formats
• Attachments
• Authentication

Business Tier
Local and Remote

Enterprise bean is a server-side component that encapsulates the business logic of
an application. For several reasons, enterprise beans simplify the development
of large, distributed applications.

• the bean developer can concentrate on solving business problems because the
container is responsible for system-level services such as transaction
management and security authorization.

• the client developer can focus on the presentation of the client. The client
developer does not have to code the routines that implement business rules or
access databases.

• because enterprise beans are portable components, the application assembler
can build new applications from existing beans.

When
• The application must be scalable
• Transactions must ensure data integrity
• The application will have a variety of clients

Type
• Session (stateful/stateless)
• Message-Driven
• Asyncronous

Persistence
ORM

• provides an object/relational mapping
facility to developers for managing
relational data in applications.
o The query language

 Finding Entities
Persisting Entity Instances

o Object/relational mapping metadata
Entities, Multiplicity, One-to-one, One-to-many,

Many-to-one, Many-to-many
Cascade Deletes

Services
Authentication

• Sucurity
o Initial Authentication
o URL Authorization
o Invoking Business Methods (remotly)

• Realms,Users,Groups, and Roles
o LDAP or DB

• SSL and Certificates

JMS
Asynchronous Messagges

• Allows applications to create, send, receive, and read messages using reliable,
asynchronous, loosely coupled communication.

• Messaging is a method of communication between software components or
applications. A messaging system is a peer-to-peer facility: A messaging client
can send messages to, and receive messages from, any other client. Each client
connects to a messaging agent that provides facilities for creating, sending,
receiving, and reading messages.

• Messaging enables distributed communication that is loosely coupled. A
component sends a message to a destination, and the recipient can retrieve the
message from the destination.

• Asynchronous:
provider can deliver messages to a client as they arrive; a client does not have to

request messages in order to receive them.
• Reliable:

can ensure that a message is delivered once and only once. Lower levels of
reliability are available for applications that can afford to miss messages or to
receive duplicate messages.

Transactions

• A typical enterprise application accesses
and stores information in one or more
databases.
o TransactionTimeouts
o Updating Multiple Databases

Reset Enterprise (DEVEL)

• Web
• WebServices
• Remote Invocation
• Distribuite Task
• Messaging
• Pooling
• Transaction
• Security

Reset Enterprise (DEVEL)
Keep It Simple Stupid

• Web
• WebServices
• Remote Invocation
• Distribuite Task
• Messaging
• Pooling
• Transaction
• Security

• django / web2py / ecc..
• SOAPpy / jsonrcp
• PyRo / RPyC
• Celery / wh y prefer?
• Stomp / JMS Bridge
• What's you need?
• PEP: 249
• django / pattern / mind

It's python!
>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Why people ask for Struts or JSF
Programmers?

• Because they want:
• XML programming
• No simple URL mappings (is XML not RE)
• @nnotations with no logic inside
• S****d Beans with getter and setter
• the validation written in XML
• Some complex container to inject A->B
• An enterprise language...
• Easy deploy: any fool can do this!

Packaging, Distributions,
Deployments

• egg
• setuptools
• easy_install
• mod_wsgi
• mod_python
• apache restart

Interview
When develop an enterprise

application?
• High number of users
• Distribuite Applications
• Transactional
• Clustering

o High Reliability
o Faul Tolerance

• Load Balancing (plugin)
o Stiky sessions

Scalability, Accessibility, and
Manageability

Scalability, Accessibility, and
Manageability

Scalability, Accessibility, and
Manageability

Enterprise Performance
Management

Just an open point....

monitoring applications
in production...

Java
• Wily Introscope
• Dynatrace
• JXInsight

Python

?

Questions?

s.federici@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

